

Potential Contributions of Airborne Radio Occultation Observations to

Forecast Improvement of Hurricanes and Atmospheric Rivers

J.S. Haase¹, M.J. Murphy Jr.¹, B. Cao¹, S.-H. Chen², M. Zheng³, F.M. Ralph³, B. J. Murphy⁴, X.-M. Chen², K.-N. Wang¹, S.-Y. Chen⁵, C. Y. Huang⁵, J.L. Garrison⁴ ¹UC San Diego; ²UC Davis; ³CW3E UC San Diego; ⁴Purdue University; ⁵Central Taiwan University

Airborne Radio Occultation (ARO)

- Measures GNSS signal propagation delay from satellites below the horizon • Refractivity at tangent point is a function of pressure, temperature, water vapor pressure • High vertical resolution
- Complementary to dropsondes Samples to the side of the flight track continuously, 25 per 7 hour flight

AR Recon 2018 Field campaign IOP1 **Targeted observations**

ensitivity of EOF PC1 to Z500 field (Shaded) semble mean Z500 (Contour); unit(m); IT:20180125

30W to 110W, LAT from 40N to 60N; VT: 201801281

PC1 to RH700 field (Shade RH700 (Contour); unit(mb); IT:2018 30W to 110W, LAT from 40N to 60N; VT: 20180128

of EOF PC1 to U250 field (Shaded emble mean U250 (Contour); unit(mb); IT:201801250

Data assimilation experiment

Atmospheric River offshore								Landfall							NonAR cyclogenesis																			
-									Landf	all Ore	gon																							
											-							Land	fall and	d heav	y preci	pitatior	ו Vanc	ouver	s.									
Experiments	s (no cy	cling)																																
26 Jan						27 Jan	1							28 Jan								29 Jan	1							30 Jan				
0:00 3:00	6:00	9:00	12:00 15:	00 18:00	21:00	0:00	3:00	6:00	9:00	12:00	15:00	18:00	21:00	0:00	3:00	6:00	9:00	12:00	15:00	18:00	21:00	0:00	3:00	6:00	9:00	12:00	15:00	18:00	21:00	0:00	3:00	6:00	9:00	12:0
				Start (Cold Ru	ın																												
				GEFS	ensem	nble as	IC/BC r	un forv	ward fo	r 4 days	S																							
				B/C		B/C		B/C		B/C		B/C		B/C		B/C		B/C		B/C		B/C		B/C		B/C		B/C		B/C		B/C		B/C
						3DVar	data as	simila	tion 1 c	ycle or	outer	domair	n D01																					
						Free fo	precast	for 4 d	ays us	ing upd	ated ar	nalysis	and B	C on ne	ested g	rid with	n two d	omains	5 D01 a	nd D02	2													
Observation	S																																	
G-4 Flights				RF01	2000 -	0200 Z																												
				ARO	Observ	ations a	available	e for D	A = 25	profiles	6																							
C-130 HI				RF01	2000 -	0300 Z														RF02	2000 -	0300 Z												
C-130 CA				RF01	1900 -	0200 Z														RF02	1900 -	0200 Z												
				8	49	30	=	87	dropso	ondes to	otal for	DA								8	3 25	18	=	51	dropso	ondes	availabl	e for ve	rificatio	n				

Data assimilation increment

NODA		DROP		DROP_ARO		
14.70		14.72		14.77		
No Data Assimilation	n	GTS conventional data +	onventional data +			
		dropsondes	dro	psondes + ARO		
Config 07.01 (GEFS	forci	ng with Ensembles)				
	14.7)	(
Description	two o	domains				
Forecast model	WRF	-ARW V4.1				
DA System	WRF	DA V4.1				
DA technique	3DVA	R No Cycling ASCII prepb	ufr			
nitial/Bdry Conditi	GEFS	Operational Forecast (fro	om HAS 1	1.0 deg)		
# of ensembles	0 i.e.	just the cntrl member (er	ns00)			
Domains	D01			D02		
Assmilation	yes			no		
Resolution	27 kn	n		9 km		
Mesh size	355 x	: 300		799 x 661		
Nest feedbak	two	way		two way		
Model levels	48					
Model top	10 hF	a				
Microphysics	Thorr	pson (Double-Moment)				
Cumulus	Grell	-Freitas		Grell-Freitas		
PBL	YSU :	scheme				
Land Surface	Unifi	ed Noah land-surface mod	del			
Longwave	RRTN	/IG				
Shortwave	RRTN	/IG				
Background Error	NMC	method (24-12 hr fcsts)				
	15 Ja	n - 15 Feb 2018				
	intita	lized at 00 & 12 UTC				
BE System	WRF	DA GENBE V1.0				
	BE Co	ovariance 5				

Impact on 12 hour forecast precipitation

Dropsonde comparison for data quality evaluation

-1.25

1200 UTC 13 Sept. 2010

-76 -72

Positive

vorticity

advection

QV(g/kg)

Sc River Re.

- ARO had an impact on the initial moisture fields that propagated downstream and affected precipitation at landfall.
- In this case, the precipitation was minor so the overall impact was minor.
- Perhaps sampling on 27 Jan at 18 Z upstream of the major precipitation at landfall on 28 Jan at 12 Z would show more impact.
- We can investigate more ways to use the forecast timing of the precipitation.
- The sensitivity of the PCA of precipitation to the observations may be a good predictor for this.

Hurricane Karl 2010 example case study

- Systematic fluctuations in temperature over the range from 6-11 km altitude correspond to strong temperature gradient in hi-res WRF model run that assimilates dropsondes.

Experiments Observations assimilated GTS + dropsondes CTRL CNTL + airborne RO non-drifting refractivity GDANn CNTL + airborne RO excess phase w/drifting tangent points GDAEd

Changes in the initial moisture, (GDAEd-CTRL) 3-km pressure and vorticity pressure, and vorticity fields

The vortex of the storm was more compact during early development, likely due to the increase in midlevel moisture and positive vorticity advection (right), compared to the CTRL experiment without ARO observations.

Impact on diabatic heating

Importance of non-local DA operator

(left) Water vapor mixing ratio (color shading) and diabatic heating (brown contours) at 650 hPa at 0000 UTC 16 September of GDAEn and GDAEd. Areas of diabatic cooling ahead of the storm likely impeded the storm development.

Tracks

-82

Terrain (m)

15th

-84

3000

2000

Potential for deployment on commercial aircraft

Flights in GTS database in one day ~3500 occultations over CONUS 11 Sept 2013 CO extreme flooding event (Chen 2017; Gochis et al., 2015)

References

14 transatlantic AMDAR flights in one day ~250 occultations (GPS only) (Lesne et al., 2002)

Chen, X. M., S. H. Chen, J. S. Haase, et al. (2018), The Impact of Airborne Radio Occultation Observations on the Simulation of Hurricane Karl (2010), MWRv, 146, 329-350.

Chen, X. M. (2017), Airborne Radio Occultation Measurements and Their Impact on Severe Weather Prediction Using the Regional WRF Model, 132 pp, UC Davis, Davis, CA.

Haase, J. S., B. J. Murphy, P. Muradyan, F. Nievinski, K. M. Larson, J. L. Garrison, and K.-N. Wang (2014), First Results from an Airborne GPS Radio Occultation System for Atmospheric Profiling, GeoRL, 40.

Lesne, O., J. Haase, G. Kirchengast, J. Ramsauer, and W. Poetzi (2002), Sensitivity analysis of GNSS radio occultation for airborne sounding of the troposphere, Phys. and Chem. of the Earth, 27, 291-299.

Wang, K. N., J. L. Garrison, J. S. Haase, and B. J. Murphy (2017), Improvements to GPS Airborne Radio Occultation in the Lower Troposphere Through Implementation of the Phase Matching Method, JGR: Atmospheres, 122, 2017JD026568.

Murphy, B. J., J. S. Haase, P. Muradyan, J. L. Garrison, and K.-N. Wang (2015), Airborne GPS radio occultation refractivity profiles observed in tropical storm environments, JGR, 120, 1690-1790.

Impact on hurricane intensity and track

Acknowledgements

This work was supported by NSF GRANT 1642650, and NASA GRANT NNX15AU19G, NSF grants 100602-200912528, AGS 1015904, and AGS 1301835. We thank the CW3E AR Program and its sponsors, including the California Department of Water Resources, and the Army Corps of Engineers FIRO program. We thank NSF & the NCAR EOL facility for the loan of the Applanix navigation system, Adrian Borsa for the GNSS equipment loan, and Dave Jabson for his assistance with the ROC equipment. Flight time on the NOAA G-IV aircraft was provided by the National Oceanic and Atmospheric Administration. We would like to acknowledge the assistance of the NOAA Aircraft Operations Center staff, and in particular Gabriel DeFao and Jack Parrish.